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The effect of vertical vibration on the long-wave instability of a Marangoni system is
studied. The vibration augments the stabilizing effect of surface tension in bounded
systems. In laterally unbounded systems nonlinear terms can stabilize non-flat states
and prevent the appearance of dry spots. The effect of a slight inclination of the
system is also considered.

1. Introduction
Thermocapillary phenomena (Scriven & Sternling 1960; Davis 1987) are of interest

in many applications, including materials processing and crystal growth in a micro-
gravity environment (Jurish & Löser 1990; Kuhlmann 1999), and coating (Cazabat
et al. 1990; Kataoka & Troian 1997) and drying (Thess & Boos 1999; Matar &
Craster 2001) processes under terrestrial conditions, and often serve as a source of
both convection and instabilities. Although Bénard was already aware of the role
of surface tension gradients in his seminal experiment (Bénard 1900), the ability of
thermocapillary stresses to drive convection was elucidated only by Rayleigh (1916)
as part of his explanation of the appearance of convection cells in thin films (see
also Block 1956; Koschmieder 1993). In such films buoyancy is typically negligible
and convection is driven by thermocapillary effects alone. The simplest configuration
exhibiting this effect consists of a horizontal fluid layer supported by a hot plate and
bounded above by a colder free surface. This system, known as the Marangoni–Bénard
system, has been used extensively to investigate both thermocapillary phenomena
(Davis 1987; Koschmieder 1993; Bragard & Velarde 1998) and the formation of
patterns (Cross & Hohenberg 1993). Some of the thermocapillary instabilities that
are observed are long wave (VanHook et al. 1997) and have therefore also been
studied in the context of thin films (see Oron, Davis & Bankoff 1997 for a recent
review, as well as Boos & Thess 1999; Oron 2000; Bestehorn, Pototsky & Thiele
2003; Thiele & Knobloch 2004).

In this paper we examine the effect of vertical vibration on these phenomena.
We focus on films that are sufficiently thin that buoyancy effects are small, or
equivalently consider low-gravity environments, where residual acceleration, due to
crew manoeuvring and machinery, has a significant impact on both material processing
systems and on-board experiments (see Skarda 2001 for references). In general,
residual oscillatory acceleration, or g-jitter, is broad-band and varies randomly both



62 U. Thiele, J. M. Vega and E. Knobloch

in magnitude and direction. This acceleration is usually transmitted through the
support structure or container walls of the fluid system in question. Thus the actual
excitation of the fluid is transmitted via the narrow-band structural response centred
on the natural frequencies of the container or support structure. Although the random
nature of the vibration and the presence of overtones cannot be ignored, the usual
first step (which also provides physical insight into fundamental mechanisms) is to
take the vibration as monochromatic, with a constant amplitude and direction.

As is well known, an inverted pendulum can be stabilized by vertical vibration
of the support (Landau & Lifshitz 1987). In fluid systems the same principle has
been used to stabilize the Rayleigh–Taylor instability in an upside-down container
(Lapuerta, Mancebo & Vega 2001 and references therein) and interfacial instabilities
of films flowing down an inclined plane (Lin & Chen 1998 and references therein). In
particular, Wolf (1970) showed experimentally that normal vibration may suppress
the Rayleigh–Taylor instability of a flat film in the short-wavelength regime, i.e.
in relatively thick films. Mechanical and thermal vibration has also been studied
in connection with the Rayleigh–Bénard system (Gershuni, Zhukhovitskii & Jurkov
1970; Gresho & Sani 1970), directional solidification (Murray, Coriell & McFadden
1991; Wheeler et al. 1991), and doubly diffusive convection (Gershuni et al. 1997 and
references therein), and used to control both thermocapillary convection (Nicolás,
Rivas & Vega 1998 and references therein) and thermocapillary instabilities. Although
this approach is attractive a number of complications remain. For example, normal
vibration cannot stabilize the conductive state in an unbounded film (Woods & Lin
1995), while tangential vibration (Or 1997) is only effective for vibration frequencies
that are not too large. In either case the stabilization results are obtained by solving
a Floquet problem, and are in general quite subtle and non-intuitive. Moreover,
the presence of lateral boundaries may be important. For example, bounded films
can be stabilized by normal vibration, and the stabilizing effect is greatest for large
vibration frequencies. In addition, the vibration affects the convective states that result
from any instability. Others (Or & Kelly 2002) have used temperature modulation
with similar ideas in mind, while Skarda (2001) considered vibration perpendicular
to the supporting plate, but ignored free-surface deformation even though long-
wave instabilities can only occur in the presence of free-surface deformation when
gravitational effects are small (Davis 1987). As shown by Or et al. (1999) the resulting
Marangoni instability can be suppressed by an active feedback control. We mention
also that the influence of normal vibration on the shape of pendant droplets was
investigated by (Faraday 1831, § 44–50), while Gavrilyuk, Lukovsky & Timokha
(2004) have used a variational principle to study this system in the large-frequency
limit.

These considerations motivate the present study. We focus on the effect of normal
vibration on the long-wave Marangoni instability of thin films on horizontal and
inclined planes, and investigate its influence on the linear and nonlinear stability of
uniform films. In particular, we describe the effects of vibration on both periodic
wavetrains, and stationary and sliding drops.

The problem is formulated in § 2, followed in § 3 by a derivation of the relevant
long-wave equation for a vibrated thin film under the assumption of no thermal
expansion. This equation is analysed and integrated numerically in § 4 for a film on
a horizontal support. Unbounded films on an inclined plane are considered in § 5.
Concluding remarks follow in § 6. Possible effects of thermal expansion are discussed
in an Appendix.
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2. Formulation
We consider a large-aspect-ratio container of depth d∗ and cross-section Ω∗,

vibrated vertically with an amplitude a∗ and a frequency ω∗, where the superscript ∗

denotes dimensional magnitudes. The bottom of the container is maintained at a fixed
temperature T ∗

0 and the system loses heat through the free surface according to
Newton’s law of cooling, ∂T ∗/∂n∗ = αth(T

∗
1 − T ∗), where n∗ is the coordinate along

the outward normal, αth is a phenomenological constant, and T ∗
1 is the ambient

temperature. In addition, we suppose that the density ρ is constant (see the Appendix)
and that the surface tension depends linearly on the temperature, σ = σ0 − γ (T ∗ − T ∗

1 ).
In order to facilitate comparison with related results in the literature we non-
dimensionalize length, velocity, time and T ∗

0 − T ∗ with d∗, ν/d∗, d∗2/ν and T ∗
0 − T ∗

1 ,
respectively, where ν is the kinematic viscosity. The resulting non-dimensional conti-
nuity, Navier–Stokes and energy equations in a reference frame attached to the bottom
of the vibrating container (z = 0) are

∇ · u + ∂zw = 0, (2.1)

∂t u + u · ∇u + w∂zu = −∇p + ∇2u + ∂2
zzu, (2.2)

∂tw + u · ∇w + w∂zw = −∂zp + ∇2w + ∂2
zzw, (2.3)

∂tθ + u · ∇θ + w∂zθ = Pr−1
(
∇2θ + ∂2

zzθ
)
, (2.4)

for (x, y) ∈ Ω and 0 < z < h(x, y, t). Here u ≡ (u, v, 0) and w are the horizontal and
vertical components of the velocity, respectively, p (= pressure + (G + aω2 cosωt)(z −
1)) represents a conveniently modified pressure, and h is the (vertical) free-surface
elevation. In addition

∇ = (∂x, ∂y, 0) (2.5)

denotes the horizontal gradient.
The boundary conditions at the supporting plate are no-slip, fixed temperature,

u = 0, w = θ = 0 at z = 0, (2.6)

while at the free surface z = h the kinematic boundary condition, tangential and
normal stress balance, and heat flux balance, take the form

∂th + u · ∇h = w, (2.7)

∂zu + ∇w − (∇u + (∇u)�) · ∇h + [2∂zw − (∂zu + ∇w) · ∇h]∇h

=
Ma

Pr
[∇θ + (∂zθ)∇h], (2.8)

p − (G + aω2 cos ωt)(h − 1) + S∇ ·
[

∇h

(1 + |∇h|2)1/2

]
=

2∂zw − 2(∂zu + ∇w) · ∇h + ∇h · [∇u + (∇u)�] · ∇h

1 + |∇h|2 , (2.9)

∂zθ − ∇h · ∇θ = Bi[1 + |∇h|2]1/2(1 − θ). (2.10)

As lateral boundary conditions, we consider two possibilities. (a) If lateral walls are
present, we impose no-slip and no-thermal-flux boundary conditions at these walls,
and suppose that the contact line is either pinned or free, namely

u = 0, w = ∂nθ = 0, and either h = 1 or ∂nh = 0 (2.11)
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for (x, y) ∈ ∂Ω . Here ∂Ω is the boundary of the cross-section Ω and n is a coordinate
along the outward unit normal. (b) In laterally unbounded films we consider periodic
boundary conditions, namely

(u, w, p, θ)(x + L1, y, z, t) ≡ (u, w, p, θ)(x, y + L2, z, t) ≡ (u, w, p, θ)(x, y, z, t),

h(x + L1, y, t) ≡ h(x, y + L2, t) = h(x, y, t),

}
(2.12)

and suppose that L1 � 1, L2 � 1. For convenience we also consider the vertically
integrated continuity equation,

∂th + ∇ ·
(∫ h

0

u dz

)
= 0, (2.13)

obtained from equation (2.1) using (2.7).
The above problem depends on the following non-dimensional parameters: the

Prandtl number Pr = ν/κ , where κ is the thermal diffusivity, the Marangoni number
Ma= γ (T ∗

0 − T ∗
1 )d∗/ρνκ , the Biot number Bi =αthd

∗/κ , and the forcing amplitude
a = a∗/d∗ and frequency ω = ω∗d∗2/ν. The gravitational and surface tension para-
meters, G = gd∗3/ν2 and S = σ0d

∗/ρν2, are related to the usual Bond and Ohnesorge
numbers, Bo = ρgd∗2/σ0 and Oh = ν[ρ/σ0d

∗]1/2 by G =BoOh−2 and S =Oh−2, where
g is the gravitational acceleration; C =Oh2 is called the capillary (or crispation)
number.

The conduction state of the problem (2.1)–(2.10), namely

u = 0, w = 0, p = 0, θ =
Bi z

1 + Bi
, h = 1, (2.14)

exhibits two kinds of instabilities: a short-wave instability and a long-wave instability.
Only the latter will be analysed below. The former could be called a Marangoni–
Bénard–Faraday instability and its study requires a numerical solution of a Floquet
problem, as done by Skarda (2001) under the restriction that the free surface remains
undeformed. For fixed Pr, this instability appears only for quite large Ma, namely
Ma ∼ 100 (Bragard & Velarde 1998; Skarda 2001). In addition, if the free-surface
deformation is taken into account we have a Faraday instability (Kumar & Tuckerman
1995; Mancebo & Vega 2002). When

1 + G2/3 	 ω, (2.15)

this instability can be avoided provided one chooses

aω1/2 ≡ a∗(ω∗/ν)1/2 < A(ωS−2) ≡ A
(
ω∗ρ2ν3

/
σ 2

0

)
, (2.16)

where A(·) is a function calculated in Mancebo & Vega (2002), shown in figure 1.
Note in particular that the marginal instability curve has the horizontal asymptote
A → Ac � 1.67 as ω → ∞.

In what follows we shall assume that these short scales remain stable. This
assumption is compatible with the distinguished limit

Pr ∼ Bi ∼ Ma ∼ G ∼ 1, S1/2 ∼ L � 1, (2.17)

where L denotes the aspect ratio of the container. Since G must be at most of order
unity in order to avoid strong stabilization by gravity waves (see below) we replace
(2.15) by the slightly more general requirement

ω � 1, (2.18)
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Figure 1. The rescaled Faraday instability threshold aω1/2 = a∗(ω∗/ν)1/2 as a function of
ωS−2 = ω∗ρ2ν3/σ 2

0 (see equation (2.16)). Stable (unstable) regions are labelled by S (U),

respectively. The asymptotes for ωS−2 → 0 and ωS−2 → ∞ are indicated by dotted lines.
Courtesy of F. J. Mancebo.

subject to the constraint (2.16). In fact, the analysis below remains valid for arbitrary
values of Bi and S, provided that ω−1 	 Pr 	 L2, Ma/Pr 	 ωL and G 	 ω2L2,
restrictions that are quite reasonable even though Pr varies in practice over a wide
range, from 0.01 for liquid metals to 105 for some silicone oils.

3. Derivation of the long-wave equation
The analysis in this section is a generalization of that by Lapuerta et al. (2001) who

used vertical vibration to control the Rayleigh–Taylor instability in large-aspect-ratio
containers. In the limit (2.17)–(2.18) the main simplifications result from (a) the long-
wave approximation and (b) the fact that the problem exhibits two well separated
timescales. In the regime

S̃ ≡ S
L2

∼ 1 and Vi ≡ a2ω2

L2
∼ 1, (3.1)

we may introduce the slow space and time variables

x̃ ≡ x

L
, ỹ ≡ y

L
, t̃ ≡ t

L2
, (3.2)

and seek a solution in the form

u =
aω

L
uo(x̃, ỹ, z, t̃) eiωt + c.c. +

a2ω

L3
h.o.h. +

1

L
us(x̃, ỹ, z, t̃) + · · · , (3.3)

w =
aω

L2
wo(x̃, ỹ, z, t̃) eiωt + c.c. +

a2ω

L4
h.o.h. +

1

L2
ws(x̃, ỹ, z, t̃) + · · · , (3.4)

p = aω2po(x̃, ỹ, z, t̃) eiωt + c.c. +
a2ω2

L2
h.o.h. + ps(x̃, ỹ, z, t̃) + · · · , (3.5)

θ =
a

L2
θo(x̃, ỹ, z, t̃) eiωt + c.c. +

a2

L4
h.o.h. + θs(x̃, ỹ, z, t̃) + · · · , (3.6)
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h =
a

L2
ho(x̃, ỹ, t̃) eiωt + c.c. +

a2

L4
h.o.h. + hs(x̃, ỹ, t̃) + · · · , (3.7)

where c.c. denotes the complex conjugate and h.o.h. stands for higher-order oscillatory
harmonics, depending on the fast time variable as eimωt , with m = 0, ±1.

Substitution of this expansion into equations (2.1)–(2.10) now leads to a series of
equations for the oscillatory and slowly varying parts of the solution, labelled with
the subscripts o and s, respectively. The oscillatory part is nearly inviscid outside two
oscillatory boundary layers attached to the bottom plate and the free surface, and is
given by

∇̃ · uo + ∂zwo = 0, iuo + ∇̃po = 0, ∂zpo = 0, (3.8a, b, c)

iθo + uo · ∇̃θs + wo∂zθs = 0 in 0 < z < hs, (3.8d)

wo = 0 at z = 0, (3.9)

∂zuo = iho − wo + uo · ∇̃hs = po − hs − 1

2
= 0, ∂zθo = −Biθo at z = hs, (3.10a, b, c, d)

where ∇̃2 and ∇̃ are the rescaled horizontal Laplacian and gradient operators,

∇̃2 = ∂2
x̃x̃ + ∂2

ỹỹ and ∇̃ = (∂x̃, ∂ỹ, 0). (3.11)

The slowly varying part is given by

∇̃ · us + ∂zws = 0, ∂zzus − ∇̃ps = Vi[(ūo · ∇̃)uo + w̄o∂zuo + c.c.], (3.12a, b)

∂zps = ∂2
zzθs = 0 in 0 < z < hs, (3.12c, d)

us = 0, ws = θs = 0 at z = 0, (3.13a, b, c)

∂t̃hs − ws + us · ∇̃hs = ps − Vi

2
(ho + c.c.) − G(hs − 1) + S̃∇̃

2
hs = 0, (3.14a, b)

∂zus =
Ma

Pr
[∇̃θs + (∂zθs)∇̃hs], ∂zθs − Bi(1 − θs) = 0 at z = hs, (3.14c, d)(∫ hs

0

us dz

)
· n = 0 and either hs = 1 or ∂nhs = 0 for (x̃, ỹ) ∈ ∂Ω̃, (3.15a, b)

if lateral walls are present. For unbounded films the boundary conditions (3.15) must
be replaced by periodic boundary conditions. Oscillatory viscous boundary layers
contribute O(ω−1) corrections to the right-hand sides of the boundary conditions
(3.13a) and (3.14c); since ω � 1 (see (2.18)) these corrections are small. In addition,
the presence of lateral walls requires a zero fluid flux outside O(L−1) boundary layers
attached to the walls; the analysis of these layers is standard and is omitted.

If we neglect the effects of both types of boundaries layers (see Nicolás & Vega
2003 and references therein) and solve equations (3.8)–(3.14) we obtain

θs = zH, po =
1

2
(hs − 1), uo =

i

2
∇̃hs, wo = − iz

2
∇̃2hs, ho = −1

2
∇̃ · (hs∇̃hs),

ps = −Vi

2
∇̃ · (hs∇̃hs) + G(hs − 1) − S̃∇̃2hs,

us =
1

2
(z2 − 2zhs)∇̃(ps +

Vi

4
|∇̃hs |2) +

Ma

Pr
z∇̃(hsH ), (3.16)
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where

H ≡ Bi

1 + Bihs

. (3.17)

The equation for θo (= − 1
2
z∇̃H · ∇̃hs + 1

2
zH ∇̃2hs) decouples.

The first boundary condition in (3.14) is equivalent to the continuity equation

∂t̃hs + ∇̃ ·
(∫ hs

0

us dz

)
= 0, (3.18)

an equation that can also be obtained from (2.13). Substituting for us yields the
following evolution equation for hs:

∂t̃hs = ∇̃ ·
[
1

3
h3

s ∇̃
(

ps +
Vi

4
|∇̃hs |2

)
− Ma

2Pr
h2

s ∇̃(hsH )

]
. (3.19)

Dropping the subscript s from h and tildes from ∇, and introducing the new
parameters

V =
Vi

2S̃
≡ ρa∗2ω∗2d∗

2σ0

, G =
G
S̃

≡ ρgL∗2

σ0

, M =
Ma

PrG ≡ γ (T ∗
0 − T ∗

1 )

ρgd∗2
, (3.20)

and the rescaled time variable

τ = S̃t̃ , (3.21)

equation (3.19) becomes

∂τh = − 1
3
∇ ·

{
h3∇

[
∇2h + V (h∇2h + 1

2
|∇h|2) − f ′(h)

]}
, (3.22)

where

f (h) = G
h2

2
− 3

2
GMBih ln

h

1 + Bi h
. (3.23)

This equation is to be solved subject to the boundary conditions (3.15):

∂n

[
∇2h + V

(
h∇2h +

1

2
|∇h|2

)
− f ′(h)

]
= 0, (3.24)

and either h = 1 or ∂nh = 0 for (x, y) ∈ ∂Ω .

4. Analysis of the long-wave equation for a horizontal substrate
4.1. Linear stability

In an unbounded domain the flat film, h = 1, is linearly stable when

3MBi

2(1 + Bi)2
< 1. (4.1)

This condition is independent of V ; in view of (3.20) it is also independent of viscosity.
Moreover, since M is proportional to Ma/G and G is quite large for thick films under
terrestrial conditions (Davis 1987), gravity waves tend to stabilize the film unless it
is highly viscous or quite thin. For instance, in a 1 mm deep silicone oil film with
ν = 0.01 cm2 s−1 we have G = 104; G falls to 1 if ν = 1 cm2 s−1 or d∗ is decreased to
50 µm.

For bounded containers condition (4.1) must be replaced by

3MBi

2(1 + Bi)2
< 1 + s0

V + 1

G
, (4.2)
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Figure 2. A typical linear stability diagram for the flat-film solution (equation (2.14)), indicat-
ing regions of stability (S) and instability (U). The critical parameters ω∗

c and a∗
c are defined

by the crossing of the long-wave Marangoni and Faraday instability thresholds. Stability with
respect to the short-wave Marangoni instability is assumed.

where s0 is the lowest eigenvalue of

∇̃2F + sF = constant in Ω̃, and either F = 0 or ∂nF = 0 on ∂Ω̃. (4.3)

For instance, for a circular container of unit radius s0 = γ1 � 3.83 or s0 = γ2 � 2.40
depending on the boundary condition, where γ1 and γ2 are the first positive roots of
J1 (the Bessel function of order one) and J ′

1, respectively. If Ω̃ is a 1 × D rectangle,
s0 = π2(1 + 4/D2) or s0 = 4/D2.

Thus in a finite domain the stability condition does depend on V . Moreover, since
V is proportional to the scaled vibration energy (a∗ω∗)2, equation (4.2) shows that
for a given value of the remaining parameters the system is stable provided that
(a∗ω∗)2 is sufficiently large, subject to the restriction (2.16). The resulting stability
region resembles that shown in figure 2. Note that the lower curve is independent
of viscosity while the upper curve moves downwards and to the right as viscosity
decreases. Thus the forcing frequency for stabilization must be quite large for low-
viscosity liquids.

For containers that are large compared to the wavelength of the fastest linear
mode one may disregard the boundary conditions at the walls of the container and
study the behaviour of spatially periodic solutions. This allows comparison with
results obtained for heated thin films without vibration (Thiele & Knobloch 2004).
The stability condition is given by equation (4.2) replacing s0 by k2 with k being the
wavenumber of the mode under study. The critical wavenumber is given by

k2
c =

G

1 + V

(
3MBi

2(1 + Bi)2
− 1

)
, (4.4)

while the growth rate β of wavenumber k is

β = − 1 + V

3
k2

(
k2 − k2

c

)
. (4.5)

Thus at the linear level the stabilizing role of vibration mimics enhanced surface
tension. This enhancement is measured by V and so is again independent of
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viscosity; however, viscosity comes into play through condition (2.16). For instance,
this condition is satisfied under microgravity conditions by a container of depth 5 mm
filled with silicone oil with σ = 20 dyn cm−1, ν = 0.01 cm2 s−1 and ρ = 1 g cm−3, subject
to vibration amplitude a∗ = 5 µm and frequency ω∗ =104 Hz; for these parameter
values V = 60. For higher viscosity liquids we can use lower vibration frequency and
obtain an even larger enhancement. For instance, for ν =1 cm2 s−1, a∗ = 0.5 mm and
ω∗ = 2 × 102 Hz condition (2.16) remains satisfied but V = 200.

4.2. Lyapunov functional

The vibration does not break the variational structure (Oron et al. 1997) of the static
counterpart of equation (3.22). Indeed, if we define a Lyapunov functional E by

E =
1

2

∫
Ω

[|∇h|2 + V h|∇h|2 + f (h)] dx dy, (4.6)

where f (h) is defined by (3.23), it is simple to show that

dE
dτ

= −1

3

∫
Ω

h3|∇U|2 dx dy, (4.7)

where

U = ∇2h + V
(
h∇2h + 1

2
|∇h|2

)
− f ′(h). (4.8)

The quantity U is defined such that equation (3.22) takes the form

hτ = − 1
3
∇ · (h3∇U). (4.9)

Thus every solution of equations (3.22)–(3.23) converges for large times to a steady
state.

4.3. Steady states

Since the local energy f (h) does not depend on the vibration it is now possible to
draw on the results of Thiele & Knobloch (2004) regarding the nonlinear stability of
a flat film. Equation (4.7) implies that the steady states of (3.22)–(3.24) are given by

∇2h + V
(
h∇2h + 1

2
|∇h|2

)
− f ′(h) + C1 = 0 in Ω, (4.10)∫

Ω

h dx dy = SΩ and either h = 1 or ∂nh = 0 if (x, y) ∈ ∂Ω, (4.11)

where SΩ is the area of Ω , and C1 is a constant corresponding to the Lagrange
multiplier for either volume conservation or a chemical potential depending on the
situation studied. Equation (4.10) can also be obtained from equation (3.22) setting
∂τh =0 and using condition (3.24).

In particular, in one dimension, the steady states are given by

h′′ + V
[
hh′′ + 1

2
h′2] − f ′(h) + C1 = 0, (4.12)

or, equivalently, by
1
2
(1 + V h)h′2 − f (h) + C1h + C2 = 0, (4.13)

where C2 is another constant. The two constants C1, C2 characterize the steady-state
solutions. Specifically,

C1 = − 1
2
V θ2

i + f ′(hi), (4.14)

C2 = f (hm) − C1hm, (4.15)
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Figure 3. Periodic nucleation and single-drop solutions with microscopic contact angle θ0 = 0
as a function of L for Bi= 0.5 and G =1.0 and (a, c) M = 3.5 > Mc (linearly unstable regime)
and (b, d) M = 1.5 < Mc (the metastable regime). (a) and (b) the norm for the nucleation
solutions (lower branches) and the drop solutions (upper branches). These meet at cusps
located at (L∗, h∗). Stable single-drop solutions with θ0 > 0 are found in the region above the
upper branch. (c) and (d). The corresponding relative energies per unit length E(L). Profiles
for the nucleation and drop solutions are shown in figure 5.

where hi and hm denote the film thickness at the inflection point and maximum
thickness, respectively. The angle θi ≡ |h′

i | measures the slope of the film at the
inflection point and for drop-like solutions is identified with the so-called mesoscopic
contact angle. It is this angle and not the microscopic contact angle θ0 at h = 0 that
is normally measured in experiments.

Equation (4.13) must be integrated using the boundary conditions (4.11), namely

h̄ ≡ L−1

∫ L

0

h(x) dx = 1 and either h = 1 or h′ = 0 at x = 0, L. (4.16)

The integral constraint represents mass conservation, and provides an implicit relation
between the constants C1, C2, or equivalently the quantities hi , hm. The solutions with
Neumann boundary conditions can be obtained from the solutions on a periodic
domain with period 2L; however, this is not so for Dirichlet boundary conditions and
more generally for Robin (or mixed type) boundary conditions (Crawford et al. 1991).

In the following we study periodic stationary solutions, described by equation (4.13).
To facilitate comparison with the vibration-free case (Thiele & Knobloch 2004) we
fix the x-scale  = σ0/ρG by setting G = 1. This leaves the period of the stationary
solutions as a free parameter. Note that the Bi and M used here correspond to the
Bi and Ma of Thiele & Knobloch (2004), while G = 1.0 corresponds to Bo = 1.0.

Since h̄ =1 the periodic solutions can be parametrized using the film volume
(or, in one dimension, its spatial period L). Thus for each parameter combination
(M, Bi, V ) there is a one-parameter family of solutions. Figure 3 shows this family
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for different V as a function of the imposed spatial period L in terms of the norm

‖δh‖ ≡ (
∫ L

0
(h(x) − 1)2 dx/L)1/2 (figure 3a, b) and the relative energy per unit length

E = E/L − f (1) (figure 3c, d). Figure 3(a) shows the norm when the flat film is
unstable (Bi= 0.5, M = 3.5): a one-parameter family of steady solutions bifurcates
subcritically from the flat film for which ‖δh‖ = 0. The solutions on the subcritical
branch are all unstable, and we refer to them as nucleation solutions. This is because
an initial perturbation with a smaller amplitude (and h̄ =1) will decay to the flat film,
while one with larger amplitude will evolve to a drop-like state on the upper branch
(see below). A similar statement holds for sliding isothermal drops (Thiele et al. 2001).
The branch of nucleation solutions terminates at a finite value of L, L =L∗, where the
minimum thickness drops to zero. The upper branch emerging from L∗ corresponds
to drop-like solutions with microscopic contact angle θ0 ≡ h′|h =0 = 0 sitting on a dry
substrate. Above this branch one can find a large variety of drop-like states with
θ0 > 0, as discussed further in Thiele & Knobloch (2004). As shown in figure 3(c) the
energy E of the nucleation solutions is always larger than that of the flat film for
which E0 = 0. Moreover, the figure also indicates that there is a small range of periods
above L∗ where the flat film has the lowest energy. Thus even though the fixed-period
drop solutions correspond to local minima of the energy (i.e. they are linearly stable)
they do not necessarily represent global minima. As shown in figures 3(b) and 3(d) for
Bi =0.5 and M = 1.5 the nucleation solutions may be present even when the flat film
remains stable for all L, but the corresponding solution branch is now disconnected
from the flat-film solution. We say in this case that the flat-film state is metastable.

The ‘potential’ g(h) = f (h) − C1h with C1 = f ′(1) (shown for Bi= 0.5 and various
M in figure 3 of Thiele & Knobloch 2004) determines whether the flat film (h = 1)
is unstable, metastable or stable. The boundary between the unstable and metastable
regimes is given by g′′(1) = 0, and corresponds to the linear stability result (4.1).
The transition from metastable to stable corresponds to parameter values for which
the minima of g(h) at h = 1 and h = 0 are identical, i.e. to g(1) = 0. This transition
therefore occurs along the curve

Mms =
1 + Bi

3Bi
, (4.17)

a quantity that is also independent of V . The resulting stability diagram in the
(Bi, M)-plane is shown in figure 4. In particular, in the limit Bi � 1 the flat film
is unstable, metastable and stable for M > 2Bi/3, 2Bi/3 >M > 1/3 and M < 1/3,
respectively. However, metastable drop solutions may exist even below Mms . Figure 5
shows examples of nucleation and drop solutions for different values of V and
fixed volume. With increasing vibration the droplets become flatter, a result that
resembles that obtained for isothermal pendant and sitting droplets by Gavrilyuk et al.
(2004).

The above results indicate that vibration stabilizes the flat film against instability
and quantify the effect. Specifically, we have seen that for increasing V :

(i) the threshold for linear instability of the film is shifted towards larger
wavelength, i.e. system size (see equation (4.4) and figure 6);

(ii) the range of existence of the drop solutions is shifted towards larger periods,
i.e. smaller drops do not exist any more (see the location of the cusp (L = L∗) in
figure 3 and figure 6);

(iii) the boundary between metastable and stable flat films shifts towards larger
system size;
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Figure 4. The stability of a flat infinitely extended film in the (Bi,M)-plane for G = 1.0,
showing regions of stability, metastability and instability. The location of the three regions is
independent of V .
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of the period is shown).



Marangoni instability with vibration 73

0 20 40 60
V

80 100

50

100

150

L

Flat film
stable

Flat film
metastable

Flat film
unstable

No drops

Metastable
drops

Figure 6. The stability of a flat film in a finite system of size L as a function of V for Bi= 0.5
and M = 3.5. In the stable range a subrange where no drops exist and one where drops are
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Figure 7. The mesoscopic contact angle θi as a function of V for different values of M when
Bi =0.5, G =1.0 and L = 100.

(iv) the amplitude (i.e. the maximum height) of the drops decreases, as does the
norm (see figures 3 and 5a);

(v) the mesoscopic contact angle θi decreases as illustrated by the drop profiles in
figure 5. The dependence of θi on V is shown for different M in figure 7;

(vi) for metastable flat films the nucleation solution (the critical dent) that has to
be overcome to generate instability becomes deeper and broader, as illustrated in
figure 5(b);

(vii) for a fixed volume of liquid (i.e. the spatial period L) the energy E (figure 3)
of the drop increases with increasing V , indicating that the drop absorbs part of the
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Figure 8. Streamlines ψ of the convection pattern inside a drop on a dry substrate for
Bi= 0.5, G =1.0, M =1.5 and L =50. (a) V =0, ψ = − 4i × 10−4, (b) V = 20, ψ = −i × 10−4,
for i = 1 . . . 9. The fluid rises near the drop surface and descends within the drop. The drop
profile itself corresponds to ψ =0.

vibration energy. This energy is not dissipated but goes into modifying the shape of
the drop (see below).

It is instructive to examine the corresponding changes in internal convection within
the drops. We do so using contour lines of the streamfunction ψ given by

ψ(x, z) =

(
z2h

2
− z3

6

)
[h′′′ − Gh′ + V (2h′h′′ + hh′′′)] +

z2

2

MGBih′

(1 + Bih)2
. (4.18)

Figure 8 shows that in the presence of vibration the circulation penetrates much deeper
into the drop, even though it is in fact weaker. As a result the overall dissipation for
V =20 is approximately half of the dissipation for V = 0.

We remark that the presence of the factor L � 1 relating the horizontal and
vertical coordinates in equations (3.2) and (3.7) implies that all ‘pairwise’ comparisons,
such as ∂xxu 	 ∂zzu, used to simplify the Navier–Stokes equation in the long-wave
approximation are satisfied; a direct comparison of u and w is not required for
the validity of this approximation, and closed streamlines, such as those in figure 8,
do not violate the conditions required by the theory. In particular, the long-wave
approximation remains valid in a moving reference frame, used in the following
section to study the influence of vibration on a flowing film on a slightly inclined
substrate.

5. Thin film on an inclined plane
5.1. Stationary states

When the substrate is slightly inclined in the x-direction, a driving term due to
gravitational acceleration has to be incorporated in equation (3.22), yielding

∂τh = − 1
3
∇ ·

{
h3∇

[
∇2h + V

(
h∇2h + 1

2
|∇h|2

)
− f ′(h)

]}
− αh2∂xh. (5.1)

Here α/ is the inclination of the substrate relative to the horizontal; f (h) is
unchanged and defined as in (3.23).
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Stationary solutions in one dimension in a frame moving downstream with velocity
v therefore satisfy the equation

h3

3
{(1 + V h)h′′′ + 2V h′h′′ − f ′′(h)h′ + α} − vh + C0 = 0. (5.2)

Here h depends only on the comoving variable ξ = x − vt , and C0 is a constant of
integration that, in contrast to the reflection-symmetric case α = 0, cannot be set
to zero. The constant C0 may be identified with the flux of liquid in the comoving
system. We choose

C0 = − 1
3
h3

0 α + vh0 ≡ Γ0 + vh0, (5.3)

corresponding to a uniform film of thickness h0. The corresponding flux in the
laboratory frame is then given by Γ0 = −h3

0 α/3. Note that for a given value of Γ0

there may be a second homogeneous solution with the same flux, given by

h̃0 = h0

(
−1

2
+

√
3v

αh2
0

− 3

4

)
, (5.4)

where h0 specifies the value of Γ0. Such a solution is present whenever v/αh2
0 > 1/3,

and allows for shock or front solutions. It corresponds to the so-called conjugate
solution, as discussed in the falling film context, for instance, by Chang (1989) and
Nguyen & Balakotaiah (2000).

Spatially periodic uniformly travelling solutions of equations (5.2), (5.3) can be
found analytically for small amplitudes and computed using continuation (Doedel
et al. 1997) in either the period L or one of the other dimensionless parameters of the
problem. As before we fix the mean film thickness to h̄ = 1 implying a dependence
of the constant C0 on the other parameters. The resulting nonlinear solutions solve
a nonlinear eigenvalue problem for the speed v specified by equation (5.2) subject to
periodic boundary conditions with period L.

To solve this problem in the weakly nonlinear regime we let h = 1 + εδ0 + ε2δ1 +
ε3δ2 + · · ·, where 0 < ε 	 1 and the δj , j � 0, have zero mean in order to ensure mass
conservation. We must also expand v and C0 in powers of ε: v = v0 + εv1 + ε2v2 + . . .,
C0 − v + (α/3) = ε2K2 + . . . . Thus K2 represents a correction to the flux required by
mass conservation.

At O(ε) we obtain the linear problem

Lδ0 ≡ 1
3
(1 + V )δ′′′

0 − 1
3
f ′′(1)δ′

0 + (α − v0)δ0 = 0. (5.5)

Here primes on the variable δ0 indicate derivatives with respect to ξ while those on f

indicate derivatives with respect to h and evaluated at h =1. Equation (5.5) is solved
by δ0 = a sin kξ , where

(1 + V )k2 + f ′′(1) = 0, v0 = α. (5.6)

This equation determines the threshold for the instability. For example, in a periodic
domain of length L we must have k = kn ≡ 2πn/L, n=1, 2, . . . . In the following
we shall be interested in values of L close the corresponding critical values
Ln =2πn

√
−(1 + V )/f ′′(1), n= 1, 2, . . . , namely L =Ln + ε2µ.

At next order we solve the problem

Lδ1 = −
(
1 + 4

3
V

)
δ0δ

′′′
0 − 2

3
V δ′

0δ
′′
0 +

(
f ′′(1) + 1

3
f ′′′(1)

)
δ0δ

′
0 − αδ2

0 + v1δ0 − K2. (5.7)
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Thus

δ1 = a2(A sin 2kξ + B cos 2kξ ), v1 = 0, K2 = − 1
2
a2α, (5.8)

where

A =
α

4kf ′′(1)
, B =

1

4f ′′(1)

Vf ′′(1) − 1
3
(1 + V )f ′′′(1)

1 + V
. (5.9)

Finally, at O(ε3), we have to solve the problem Lδ2 = N2(δ0, δ1, µ). The solvability
conditions at this order yield

− 2

3L
(1 + V )k2 µ

a2
=

(
7
2

+ 4V
)
k2B + 1

2

(
f ′′(1) + 1

3
f ′′′(1)

)
B +

A

k
α − 3

4
V k2

− 1
4

(
f ′′′(1) + 1

6
f iv(1)

)
, (5.10)

v2

a2
=

(
7
2

+ 4V
)
k3A + 1

2

(
f ′′(1) + 1

3
f ′′′(1)

)
kA +

(
1
4

− B
)
α. (5.11)

Here k = kn ≡ 2πn/Ln, and

f ′′(1) = G − 3GMBi

2(1 + Bi)2
, f ′′′(1) =

3GMBi(1 + 3Bi)

2(1 + Bi)3
,

f (iv)(1) = −3GMBi(1 + 4Bi + 6Bi2)

(1 + Bi)4
. (5.12)

We can think of equation (5.10) as an equation for µ given a. It follows that if µ > 0
the bifurcation is supercritical, while if µ < 0 it is subcritical. The case µ = 0 is
therefore the transition case and corresponds to

α2

k2
n

= 1
2

(
k2

n + f ′′(1) − 1
3
f ′′′(1)

)2
+ 1

6
f ′′(1)f iv(1). (5.13)

This condition can be viewed as an equation for either M or V or indeed α; its
predictions agree well with numerical computations, as discussed next.

These solutions can be extended into the fully nonlinear regime using numerical
continuation. This is most easily done by starting from the neutrally stable solutions
of the linearized problem, i.e. sinusoidal solutions with period Lc = 2π/kc where kc is
given by equation (4.4), or equivalently by equation (5.6). We may start from a solution
consisting of just one period Lc or from a ‘replicated’ solution with period nLc, where
n is an integer. We call the resulting solution branches emanating from the zero
amplitude state (uniform film) n-mode primary branches. Branches bifurcating from
these in secondary bifurcations are called secondary solution branches. The n > 1
primary branches can be obtained directly from the n= 1 branch by multiplying the
solution period by n. Solutions on such branches have ‘internal symmetry’ Zn, in
addition to the SO(2) symmetry due to translation invariance of the system. The
secondary bifurcations either respect the discrete Zn symmetry (in which case they
correspond to saddle-node bifurcations) or break it, creating a secondary branch of
lower symmetry.

We focus here on the n= 1 primary branches, a selection of which is shown in
figure 9. Each panel shows curves for different values of V for a fixed inclination
angle α and G = 1.0, Bi= 0.5, M = 3.5. The figure shows that increasing V at fixed
α changes the bifurcating branches and the corresponding film profiles in a way
that resembles qualitatively the changes found for V = 0 when α increases. Thus the
presence of vibration does not lead to qualitatively new types of behaviour.
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Figure 9. The n= 1 solution branches obtained by continuation from small-amplitude
solutions for different values of α and V when G = 1.0, Bi= 0.5, M = 3.5, and (a) α = 0.01,
(b) 0.07, (c) 0.1, (d) 0.19, (e) 0.29, (f ) 0.5. (a–f ) The values of V correspond to the legend
in (a).

For small α (figure 9a) an increase in V has a similar effect as on the horizontal
substrate, namely the vibration decreases the L2 norm of the profiles. Figures 10(a)
and 10(b) show that as the vibration number increases for fixed α the drop profile
begins to resemble a spherical cap. At the same time the internal circulation penetrates
much deeper into the drop. Moreover, the drift velocity v of both nucleation and drop
solutions of fixed period decreases with increasing vibration (figure 11a), primarily
because oscillations in the mesoscopic contact angle tend to pin the state in place.
However, the situation for the surface wave states present at larger inclinations α

is quite different (see below), largely because for these states the mesoscopic contact
angle is unimportant.

Provided α is not too large (figure 9a–e) an increase in V induces a transition from
large-amplitude sliding drop solutions to small-amplitude surface waves. This reflects
the transition from a Cahn–Hilliard-type dynamics to a Kuramoto–Sivashinsky-type
dynamics described by Thiele & Knobloch (2004), and is accompanied by a change in
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Figure 10. Drop profiles with associated streamlines in the comoving frame. (a, b) α = 0.01,
and (c, d) α = 0.1. The parameters are L =80, G = 1.0, Bi= 0.5, M = 3.5 and V =0 for (a, c),
and V = 20 for (b, d). The streamline intervals and drop velocities v are (a) ∆ψ =0.005,
v = 0.011, (b) ∆ψ = 0.005, v = 0.0063, (c) ∆ψ = 0.005, v = 0.072, and (d) ∆ψ = 0.01, v =0.099.
Solid (dashed) streamlines represent clockwise (counter-clockwise) flow; dotted lines in (a) show
intermediate clockwise streamlines with ∆ψ =0.001.

the character of the primary bifurcation from subcritical to supercritical at V = Vcrit

given by equations (5.13) and (5.6). This dramatic change in the surface profile is
accompanied by a similarly dramatic change in the flow pattern (cf. figures 10c and
10d). In the absence of vibration (V =0) the drop is flat, with a capillary ridge at
the leading front, above a pair of strongly asymmetric convection rolls; behind the
capillary ridge the streamlines are nearly parallel, while at the back of the drop there
is again a stronger upward flow driven by the surface tension gradient. In contrast,
when V is increased to V = 20 the drops are replaced by a freely flowing film with a
small surface undulation and streamlines that are almost parallel (figure 10d). This
state is similar to the surface wave states present at larger inclinations when V = 0.

For large α (figure 9f ) surface waves dominate already for V = 0. As V increases
their amplitude decreases while their spatial period increases. Since the amplitude of
the surface deflection is reduced, vibration makes the film less unstable. In addition
the drift velocity v increases with increasing vibration (figure 11b) largely because it
augments the effective gravitational acceleration acting on these states.

The overall change from drop-like solutions to surface waves with increasing
inclination or vibration strength can be captured by focusing on the loci of the
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Figure 11. The drift velocity along the n= 1 solution branch for different values of V and
(a) α = 0.01 (nucleation states above, drop states below), (b) α =0.5 (surface waves). The
parameters are G = 1.0, Bi= 0.5, M = 3.5.

main saddle-node bifurcations and the change from sub- to supercritical primary
bifurcation. Figure 12(a) shows these loci as a function of V for different α

whereas figure 12(b) compares the analytical prediction (5.13) for the transition
from subcritical to supercritical primary bifurcation to the numerical results. For
very small inclinations, α = 0.01, only one saddle-node bifurcation is present, and
this moves towards larger periods with increasing V . Thus the primary bifurcation is
subcritical, and it remains so until V ≈ 760. The figure shows that the distance (on
a logarithmic scale) between the saddle-node and the primary bifurcation remains
approximately constant. Thus the range of periods with unstable nucleation solutions
increases with increasing V (cf. figure 9a).

For larger inclinations, e.g. α =0.1, the primary bifurcation becomes supercritical
as indicated by the appearance of the upper dashed line in figure 12(a). This line
represents the loci of the right-most saddle-node bifurcations (cf. figure 9). In contrast,
the locus of the left-most saddle-node bifurcation remains essentially unchanged. This
implies that for larger V there is a large range in L where stable surface waves and
drop-like states coexist. However, as α increases yet more this coexistence range
shrinks drastically. For example, for α = 0.19 the transition from sub- to supercritical
primary bifurcation occurs at V ≈ 0.8, indicating the appearance of surface waves,
while the left-most saddle-node bifurcation moves off to infinity when V ≈ 6. No
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Figure 12. (a) Loci of the main saddle-node bifurcations on the n= 1 primary branch in the
(V,L)-plane for different inclinations α. The thin dotted line denotes the primary instability of
the flat film solution. (b) The transition from sub- to supercritical primary bifurcation in the
(V, α)-plane obtained analytically (equations (5.13) and (5.6)). The solid circles correspond to
the numerical results shown in (a). The parameters are G = 1.0, Bi =0.5, M = 3.5.

drop-like states can exist beyond this value of V . The oscillation in this curve reflects
the formation of an isola of solutions: at V ≈ 3.2 an isola detaches from the primary
branch near the left-most saddle-node in a reverse ‘necking’ bifurcation. The resulting
loop of stationary states shrinks and vanishes at V ≈ 5.7.

At even larger inclinations, α = 0.29, the primary bifurcation is always supercritical
(cf. figure 9e), and the upper dot-dashed line in figure 12(a) no longer reaches the
thin dotted line. An isola is present at small V , but only surface waves are present
for V � 1.8.

5.2. Linear stability

We next turn to the linear stability properties of the stationary solutions obtained in
§ 5.1 for the inclined substrate. Because we are interested in the overall influence of
vibration we restrict our attention to the n= 1 primary branch, i.e. we do not study
instabilities leading to coarsening; for the latter we would have to investigate the
stability properties of n > 1 primary branches as well.

To determine the stability properties of the stationary nonlinear solutions h0(ξ )
of equation (5.2) obtained in § 5.1 we write h(ξ ) = h0(ξ ) + εh1(ξ ) eβτ , where h1 is an
infinitesimal perturbation of h0 in the frame moving with the velocity v. Equation (5.1)
in one dimension, linearized in ε, yields an eigenvalue problem for the growth rate β

and the associated eigenfunction h1(ξ ):

β h1 = L(h0, h
′
0, h

′′
0, h

′′′
0 , h′′′′

0 )h1, (5.14)

where L is a fourth-order linear differential operator acting on the perturbation h1(ξ )
whose coefficients depend nonlinearly on h0 and its spatial derivatives.

The solution of this problem is again based on continuation techniques. The
eigenvalues and eigenfunctions are obtained in a three-step procedure. First, we
determine h0 as described in § 5.1. Second, the eigenvalue problem is discretized in
space using equidistant discretization and solved numerically. However, this technique
is severely limited in its applicability because it lacks accuracy for large periods or
steep profiles h0(ξ ) and, more generally, for small eigenvalues β . To avoid these
difficulties we employ in a third step numerical continuation of the solution of the
nonlinear eigenvalue problem (5.2) together with the linear eigenvalue problem (5.14).
The complete system used in the third step therefore consists of eleven first-order
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Figure 13. The linear stability of n= 1 stationary solutions of different periods as a function
of the vibration number V for (a) α = 0.19 and (b) α =0.4. The solid lines delimit the instability
region (shaded) and correspond to stationary instability in the comoving frame. The dashed
lines indicate the location of subsequent oscillatory instabilities. The dotted line in (a) indicates
the locus of the saddle-node bifurcations at which the primary branch acquires stability, while
the dotted line in (b) corresponds to the primary (supercritical) bifurcation. Thus in (b) n= 1
solutions exist only above the dotted line. The parameters are G =1.0, Bi= 0.5, M = 3.5.

differential equations (three for h0 and four for the real and imaginary parts of h1,
respectively). Using this procedure with the result of step two as a starting point we
can calculate both h0 and h1, and the associated eigenvalues v and β , in parallel
for any system parameters. Moreover, points of special interest, such as the location
of zero growth rate (i.e. bifurcation points), can also be followed through parameter
space.

As a general tendency we find that increasing the vibration number V stabilizes
the stationary solutions. However, there are small ranges of V in which the opposite
happens. We illustrate these conclusions in figure 13 computed for two inclinations α.
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Figure 13(a), for α = 0.19, summarizes the linear stability properties on the upper
part of the n= 1 primary branch (cf. figure 9d). The branch is stable with respect to
real modes but becomes unstable to a variety of oscillatory modes as L increases.
When V = 0 there is a small unstable region near L =10; thereafter the branch is stable
up to an instability threshold Lc ≈ 20. As L increases, more and more oscillatory
modes become unstable. Thus the branch is unstable for L > Lc. As V increases the
instability interval near L ≈ 10 starts to shrink and eventually vanishes when V ≈ 0.7.
The instability threshold Lc initially moves towards larger periods leaving a larger
range of stable solutions. However, between V ≈ 2 and V ≈ 3 the threshold shifts
slightly towards smaller L, decreasing the range of stable solutions. Once V > 3 the
stationary solutions correspond to surface waves and Lc moves rapidly towards larger
periods as V increases, indicating that vibration has a strong stabilizing influence on
these states. At L ≈ 250 and V ≈ 4.9 the instability thresholds for different modes
start to cross, with the fourth oscillatory mode eventually becoming dominant. It is
this mode that destabilizes the high-L part of the n= 1 branch once V � 5.2.

Figure 13(b) shows the corresponding results for α = 0.4. In this case all states are
surface waves. The figure shows that these states are always stable with respect to
real modes but become unstable to oscillatory ones as L increases. The instability
threshold Lc is determined by two different oscillatory modes. At small V , V < 1.7,
the instability is dominated by a mode that is unstable even when V = 0. In fact,
there is a very small range of V , 0 < V < 0.1, where Lc decreases with increasing V

(from 62.5 to 61.3). For V > 1.7 a different mode takes over that is not present when
V =0. Between V ≈ 3 and V ≈ 4 a small but finite range of stable periods exists near
L =80, but for larger V the threshold Lc increases monotonically, confirming again
that vibration has a generally stabilizing influence.

6. Concluding remarks
In this paper we have derived, using lubrication theory, an evolution equation

describing the effect of high-frequency vertical oscillation on a thin film on either
a horizontal substrate or a slightly inclined one. The equation incorporates, in
addition to vibration, thermocapillary effects, hydrostatic and Laplace pressure, and
gravitational driving when the substrate is inclined, and represents a new thin-film
equation. The equation was derived under the assumption that short-wave Faraday
instability is absent, and consequently that the only modes of interest are long
wave. In addition we assumed that the short-wave Marangoni instability (Golovin,
Nepomnyashchy & Pismen 1994) is also absent. The former assumption is not very
restrictive; the latter restricts the practical application of our analysis to films that
are not too thick. However, the film cannot be too thin either, in order to justify
our omission of van der Waals interaction with the substrate. For films of thickness
100 nm or less the resulting disjoining pressure can be included in a straightforward
fashion (Bestehorn et al. 2003). However, our theory applies to films this thin only
for extremely high vibration frequencies, ω∗ = 108ω s−1 for h = 100 nm.

Our study of the resulting evolution equation revealed that normal vibration has in
general a stabilizing influence. This is so for (a) a flat film on a horizontal substrate, (b)
stationary drops on a horizontal substrate, (c) sliding drops on an inclined substrate,
and (d) surface wave states on an inclined substrate. In particular, vibration raises
the threshold wavelength for the instability of flat films and decreases the mesoscopic
contact angle of drops while smoothing their profile and decreasing their height (cf.
figure 8). Vibration also moves the drop states to larger periods, i.e. a stationary
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Fluid HT 70 Silicon oil 5cS Silicon oil 10cS
Density ρ (kg/m3) 1680 920 940
Kinematic viscosity ν (10−6 m2/s) 0.5 5.0 10.2
Thermal diffusivity κ (10−6 m2/s) 0.043 0.008 0.1
Surface tension gradient γ = dσ/dT NA NA 0.69

(10−4 kg/s2K)
Surface tension σ0 (kg/s2) 0.014 0.0197 0.0201

Table 1. Material parameters for 5cS and 10cS silicon oil, and for HT70, taken from VanHook
et al. (1997); Engel & Swift (2000); Juel et al. (2000). HT70 is a perfluorinated hydrocarbon
(also called a Galden fluid).

vibrating drop cannot exist if its volume is too small. However, the resulting drop-like
states may be more subcritical than in the absence of vibration. At larger inclinations
vibration can turn subcritical primary bifurcations into supercritical ones, and
generally makes such bifurcations more supercritical, thereby favouring surface waves
over drop-like states. Thus vibration shifts the transition from Cahn–Hilliard-type
dynamics to Kuramoto–Sivashinsky-type dynamics described in Thiele & Knobloch
(2004) towards smaller inclination angles. At the same time vibration improves the
mixing properties of Marangoni convection, particularly in large droplets, an effect
that may have important consequences for drops consisting of binary mixtures where
concentration effects can modify not only the surface tension but the static or dynamic
contact angles as well.

At present there are no experimental studies of the influence of high-frequency
normal vibration on long-wave Marangoni instability or on drop shape on a heated
substrate. Even in the absence of vibration, experiments on the long-wave Marangoni
instability of a thin liquid layer or the behaviour of sitting drops on a heated horizontal
substrate are relatively sparse (VanHook et al. 1995, 1997). To our knowledge no
experimental results are available on the dependence of the contact angle of sitting
drops on substrate temperature or of the instability wavelength on the temperature
and film thickness. Such investigations are worthwhile, however, and could be used to
study the influence of high-frequency vibration. In the following we suggest a possible
experiment of this type.

Table 1 lists material parameters for specific fluids used in existing Marangoni
experiments. Typical values are κ = 0.05 × 10−6 m2 s−1 (note that the Prandtl number
can be large), ρ =1000 kgm−3, σ0 = 0.02 kg s−2, and γ = 1.0 × 10−4 kg s−2 K−1. A
typical range for the imposed temperature difference is 0.05 <δT < 5.0 K, while the
thickness of the flat film satisfies 50 < d < 250 µm (VanHook et al. 1995). The
requirement that the parameter G in equation (3.20) be equal to 1 (assumed here)
leads to a value of the horizontal length L∗ = 0.0015 m. If we take d∗ = 150 µm,
then the requirement that V ∼ 1 in equation (3.20) leads to a∗ω∗ = 0.55m s−1. With
these values the requirement that points below the marginal instability curve in
figure 1 be stable to the Faraday instability leads to the condition that a∗√

ω∗/ν � 1,
requiring that ω∗ν > 3000. Thus ω∗ρ2ν3/σ 2

0 � 100. Typical parameter values leading
to points in the Faraday-stable regime are then the following: (a) ν = 0.003 m2 s−1,
ω =100 s−1 a∗ = 5.5mm; (b) ν = 0.0003 m2 s−1, ω = 1000 s−1, a∗ =0.55 mm; or (c) ν =
0.00003 m2 s−1, ω =10 000 s−1, a∗ = 0.055 mm. If instead, we require that V ∼ 20 (as
in many calculations in the paper), then a∗ω ∼24 m s−1, and ω∗ν must be greater than
60 000, which leads to (a) ν = 0.06 m2 s−1, ω = 100 s−1, a∗ = 24mm; (b) ν = 0.006 m2 s−1,
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ω = 1000 s−1, a∗ =2.4mm; or (c) ν =0.0006 m2 s−1, ω = 10 000 s−1, a∗ = 0.24 mm. We
are aware that some of these combinations of ω∗ and a∗ can be difficult to attain
in practice, but they provide an indication of the requirements of the theory. On the
other hand, the requirement that M ∼ 1 yields T ∗

0 − T ∗
1 ∼ 2 K, which agrees well with

existing long-wave Marangoni experiments (VanHook et al. 1997).
The proposed experiments could be used on the one hand to study the influence

of vibration on long-wave Marangoni instability in large-aspect-ratio domains, and
on the other hand to study the characteristics of individual sitting and sliding drops
under the influence of heating and vibration. In the former the interesting questions
range from the suppression of the initial surface instability to the effect of vibration
on long-time coarsening behaviour; in the latter case theory predicts that on an
inclined substrate the transition from drop-like states to surface waves should be very
sensitive to vibration.

The thin-film model incorporating vibration derived here can be extended to the
study of a number of interesting open questions concerning the effect of (normal)
vibration on the dynamics of thin liquid films, including moving contact lines
(Huh & Scriven 1971), coarsening dynamics (Bestehorn et al. 2003; Merkt et al.
2005) and modes of instability of multilayer films (Pototsky et al. 2004, 2005). In
particular, the influence of vibration on various transverse instabilities of advancing
and receding contact lines (see, for instance, Cazabat et al. 1990; Brzoska, Brochard-
Wyart & Rondelez 1992; Spaid & Homsy 1996; Veretennikov, Indeikina & Chang
1998; Bertozzi et al. 1998; Diez, Kondic & Bertozzi 2001; Thiele & Knobloch 2003)
is of particular interest, both from a fundamental point of view and for practical
applications. We also anticipate applications of the theory to the problem of levelling
of a rough liquid surface (Schwartz et al. 1996), where we expect that an initially
rippled stable thin liquid layer will level faster in the presence of vibration because
the effective increase in surface tension ‘hardens’ the surface. Finally, we also expect
that instabilities due to localized or heterogeneous heating (Kabov 1998; Skotheim,
Thiele & Scheid 2003; Kalliadasis, Kiyashko & Demekhin 2003) may be controlled
through the use of vibration, reducing for instance the probability of dry spots in
heat exchangers.

This research was supported in part by DGES, NASA and EU under Grants
MTM2004-03808, NNC04GA47G and MRTN-CT-2004-005728.

Appendix. Effect of thermal expansion
In the derivation of the evolution equation we have neglected buoyancy effects due

to density changes in the body of the film. To justify this assumption we permit the
density to depend on temperature according to ρ = ρ0[1 − β(T ∗ − T ∗

0 )], and include
the resulting density changes whenever they couple to (frequency-modulated) gravity.
This assumption constitutes the Boussinesq approximation and is amply satisfied in
thin films. With the resulting additional term the vertical momentum equation (2.3)
is replaced by

∂tw + u · ∇ω + w∂zω = −∂zp + ∇2w + ∂2
zzw − ε(G + aω2 cos ωt)θ, (6.1)

where

ε = β(T ∗
0 − T ∗

1 ) 	 1 (6.2)

is a measure of thermal expansion, and is related to the Rayleigh number, Ra =
gβ(T ∗

0 − T ∗
1 )d∗3/(kthν) ≡ εGPr. Proceeding as in § 3, we replace equations (3.8c) and
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(3.12a) by

∂zpo = −ε

2
θs, ∂zps = −ε

[
Gθs +

Vi

2
(θo + c.c.)

]
in 0 < z < hs, (6.3)

and the boundary condition (3.14b) by

ps − Vi

2
[(εθs + 1)ho + ε(hs − 1)θo + c.c.] − G(hs − 1) + S̃∇̃2hs = 0 at z = hs. (6.4)

Since ε is small but G cannot be too large (in order to avoid stabilization by gravity
waves (Davis 1987) the new terms introduced by thermal expansion contribute only
small corrections to the results obtained in § 3.
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